## POPULATION BASED TRAINING OF NEURAL NETWORKS

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojtek Czarnecki, Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, Koray Kavukcuoglu

# DeepMind

7th December 2017, NIPS Metalearning Symposium

#### MOTIVATION

#### Neural Networks require optimisation to become useful.

The success of a neural network after optimisation is determined by the joint tuning of

- Model architecture

# Model architecture Data optimised over Details of optimisation tuneable knobs are hyperparameters

The correct hyperparameters are crucial to success.

Machine learning includes tuning hyperparameters: expensive, slow. Biases our model selection to favour tuneable algorithms.

Reinforcement Learning (RL) is highly non-stationary, requires nonstationary hyperparameters.



Automate with Bayesian optimisation: GP-UCB [Srinivas '09],TPE [Bergstra '11], Spearmint [Snoek '12], SMAC [Hutter '11] Speed up process [Gyorgy '11, Agarwal '11, Sabharwal '16, Swersky '13, Swersky '14, Domhan '15, Klein '16, Snoek '15, Springenberg '16] or use parallel bandits [Li '16]. Lead to SOTA performance e.g. language models [Melis '17] Or genetic algorithms: [Young '15, Whiteson '06, Miikkulainen '11, Schmidhuber]

RANDOM SEARCH





RANDOM SEARCH



Unreasonably effective [Bergstra '12].

Easy to parallelise.

Wastes computation on easily identifiable bad hyperparameters. Still limits to fixed hyperparameters for all of training.



Start with random search.

#### Allow workers to share information.

Workers can **exploit** for model selection, and **explore** new hyperparameters.

Genetic algorithm acting on a timescale which allows gradient based learning.



Start with random search. Randomly initialise model weights. Randomly initialise hyperparameters from a prior distribution







#### Allow training for enough steps for learning to occur.



#### Population Based Training (PBT)



**Exploit:** each worker compares its performance to the population. If bad, then inherit the partial solution from a better worker (e.g. copy the model and hyperparameters).

- Binary tournament random opponent, better model wins.
- Truncation selection if in bottom 20% inherit from top 20%.



#### Population Based Training (PBT)



**Explore:** mutate the hyperparameters that were inherited to explore potentially better hyperparameters at this point in training. Mutate each hyperparameter independently.

- Perturb current value randomly by factor of e.g. 20%.
- Resample from the initial prior distribution defined.



#### Population Based Training (PBT)



Step: perform steps of regular gradient-based training.

**Exploit:** if worker is bad, then inherit better partial model.

**Explore:** mutate the hyperparameters that were inherited.

#### Repeat.

## TOY EXAMPLE





Population Based Training



Combines local optimisation with gradients with model selection and hyperparameter refinement. Two-timescale learning system.

Exploit can optimise for non-differentiable & expensive metrics. Allows online adaptation of hyperparameters.

Asynchronous and very easy to integrate with existing pipelines.

#### EXPERIMENTS

Demonstrate on a range of domains.



Speeds up learning, can use less computational resources, better final performance.

## UNREAL ON DM LAB

UNREAL [Jaderberg '16] on DeepMind Lab 3D environments.



#### UNREAL ON DM LAB





## UNREAL ON DM LAB



## FUN ON ATARI

Feudal Networks (FuN) [Vezhnevets '16] on Atari environments.



## MACHINE TRANSLATION

Transformer Networks [Vaswani '17] for WMT English-German. Optimise for BLEU score directly.



#### Discovers hand designed learning rate schedule

#### GENERATIVE ADVERSARIAL NETWORKS

DCGAN architecture [Radford '16] on CIFAR-10. Optimise for Inception score directly.

#### Discriminator LR annealed aggressively



GAN population development





## ALGORITHM ANALYSIS



Smaller population size means higher variance results due to greedy algorithm.



## ALGORITHM ANALYSIS



Smaller population size means higher variance results due to greedy algorithm.



#### PBT over

PBT on weights and hyperparameters are crucial to best performance.

## ALGORITHM ANALYSIS



Smaller population size means higher variance results due to greedy algorithm.



PBT over

PBT on weights and hyperparameters are crucial to best performance.



#### Hyperparameters

Adaptation of hyperparameters better than using best found hyperparameters

#### CONCLUSIONS

FuN population development

# Algorithm for joint optimisation of model and hyperparameters

- Online adaptation of hyperparameters.
- Model selection by weight inheritance.
- Easy to integrate with existing training code.

#### Enhances training across many domains

- Improves performance of final models found.
- Does not change the wall clock time for final results.
- Can reduce the computational resources required.
- Good for new unfamiliar models.
- Adapts to non-stationary training problems.
- Optimise indirect performance metrics.

#### Future work with PBT

- Better exploit the population in non-greedy way.
- Better explore in hyperparameter space, e.g. online modelling, crossover.

1000 2000 3000 4000 5000 6000 7000 8000 9000 Cumulative Expected Reward

# QUESTIONS?