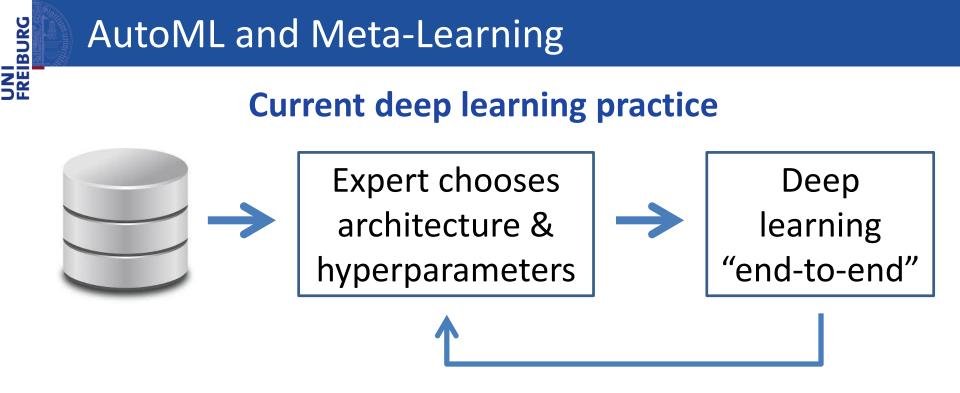


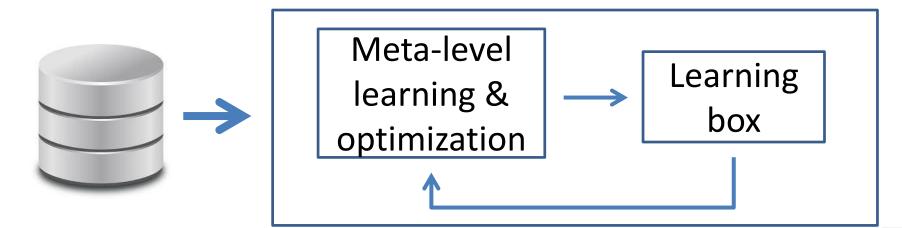
Automatic Machine Learning (AutoML) and How To Speed It Up

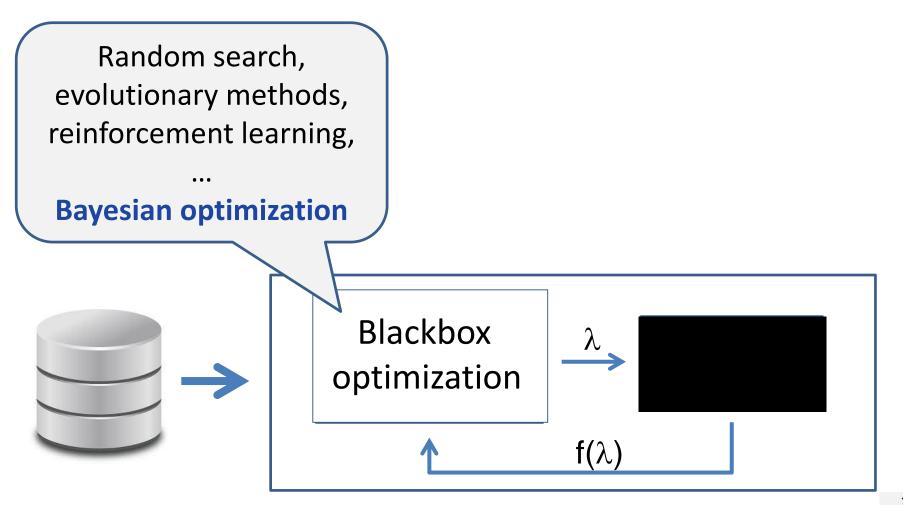
Frank Hutter

Department of Computer Science University of Freiburg, Germany fh@cs.uni-freiburg.de



AutoML: true end-to-end learning



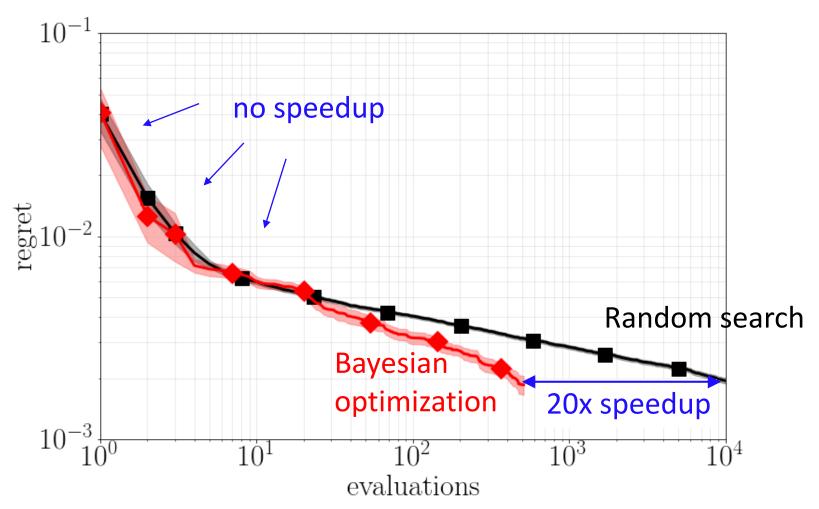


Effectiveness of Bayesian Optimization

"Sometimes, BayesOpt is only twice as fast as Random Search"

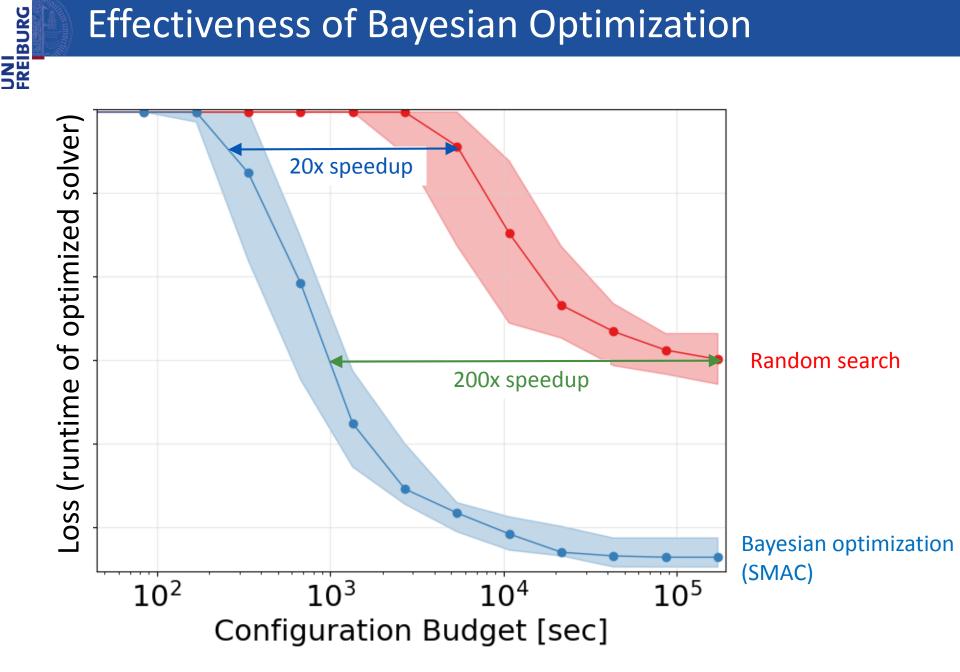
• But sometimes it is dramatically faster

UNI FREIBURG



Example: Optimizing a deep feedforward net on dataset adult, 7 hyperparameters

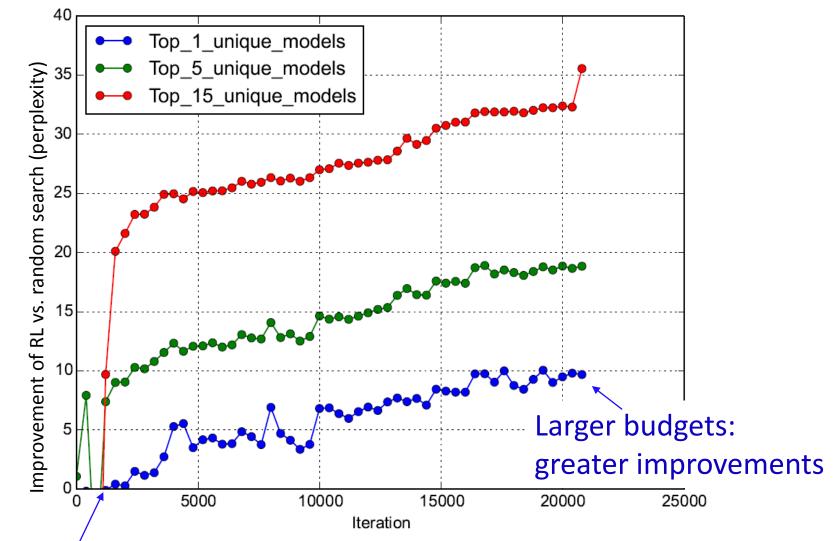
Effectiveness of Bayesian Optimization



Example: Optimizing CPLEX on combinatorial auctions (Regions 100), 76 hyperparameters

Same Pattern Occurs in RL vs. Random Search

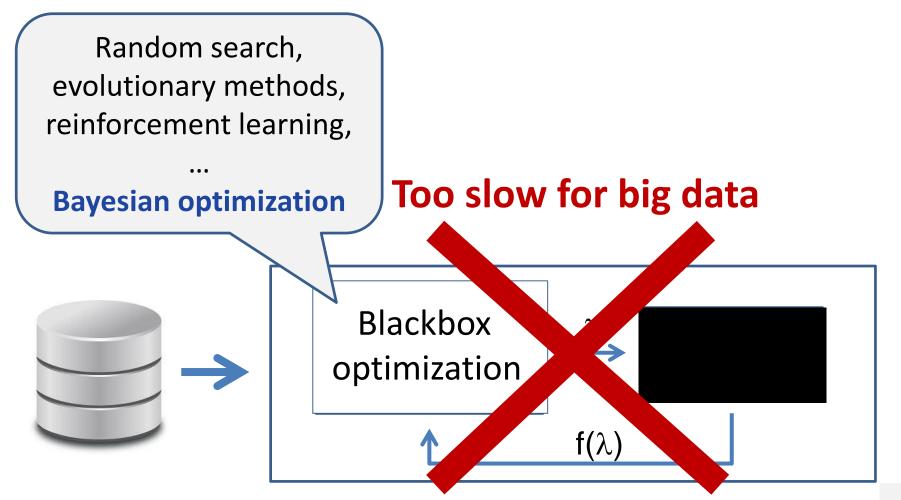
UNI FREIBURG



Up to 1200 function evaluations: RL not better than Random Search

Figure taken from "Neural Architecture Search by Reinforcement Learning", Zoph & Le

AutoML as Blackbox Optimization



AutoML systems

ways to go beyond blackbox optimization

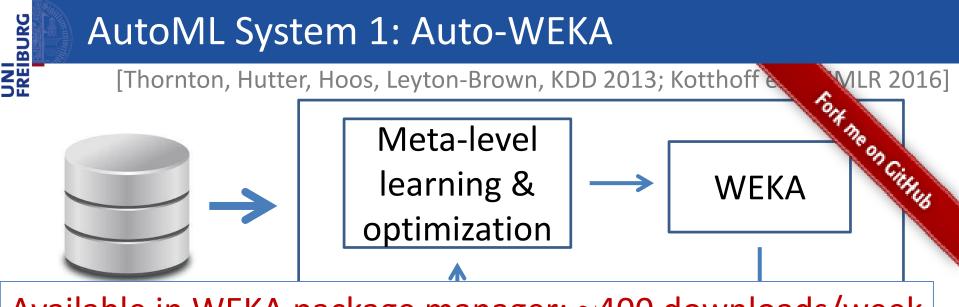
Benchmark: AutoML Challenge

• Large-scale challenge run by ChaLearn & CodaLab

- 17 months, 5 phases with 5 new datasets each (2015-2016)
- 2 tracks: code submissions / Kaggle-like human track
- Code submissions: true end-to-end learning necessary
 - Get training data, learn model, make predictions for test data
 - 1 hour end-to-end

UNI FREIBURG

- 25 datasets from wide range of application areas
 - Already featurized
 - Inputs: features X, targets y

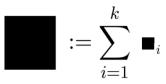


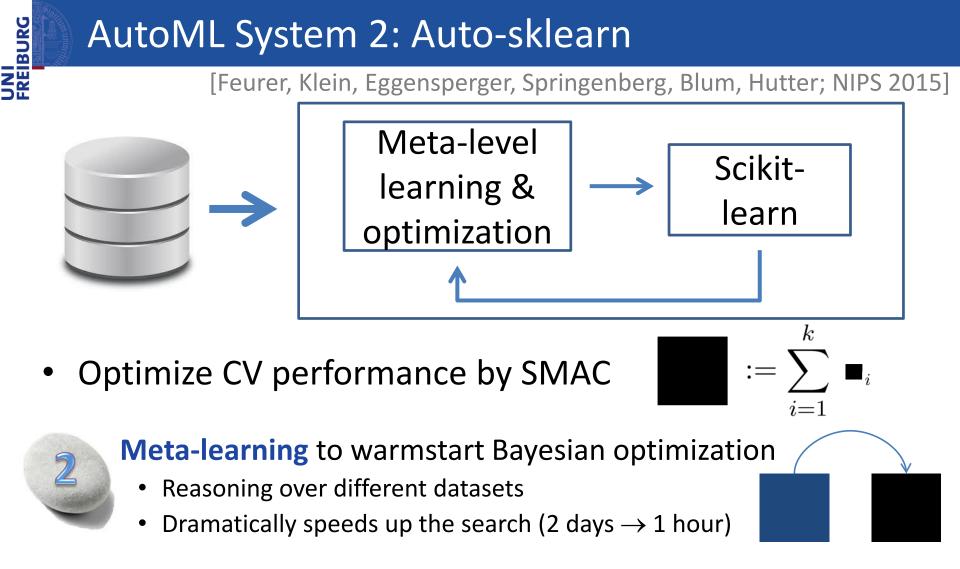
Available in WEKA package manager; \approx 400 downloads/week

- Parameterize ML framework: WEKA [Witten et al, 1999-current]

- 27 base classifiers (with up to 10 hyperparameters each)
- 2 ensemble methods; in total: 786 hyperparameters
- Optimize CV performance by Bayesian optimization (SMAC)

- Only evaluate more folds for good configurations
 - 5x speedups for 10-fold CV





Automated **posthoc ensemble construction** to combine the models Bayesian optimization evaluated

• Efficiently re-uses its data; improves robustness

Auto-sklearn: Ready for Prime Time

- UNI FREIBURG Winning approach in the AutoML challenge
 - Fort me or Auto-track: overall winner, 1st place in 3 phases, 2nd phase
 - Close competitor: variant of automatic statistician [Lloyd et al]
 - Human track: always in top-3 vs. 150 teams of human expension

121

Final two rounds: won both tracks

https://github.com/automl/auto-sklearn

1,638

Star

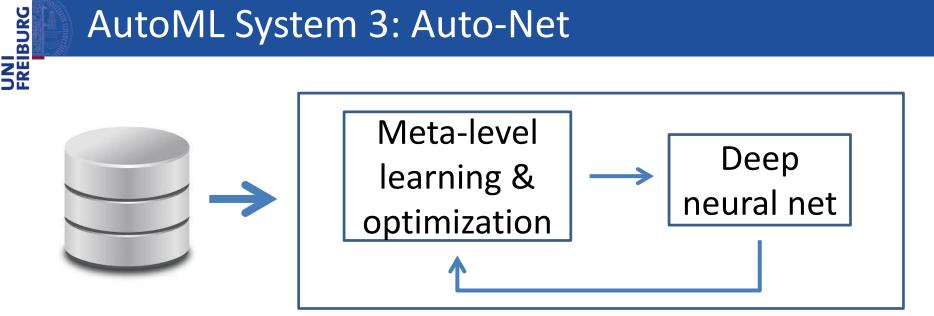
% Fork

298

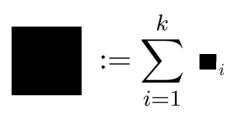
Trivial to use:

import autosklearn.classification as cls automl = cls.AutoSklearnClassifier() automl.fit(X_train, y_train) y hat = automl.predict(X test)

• Watch



• CV performance optimized by SMAC



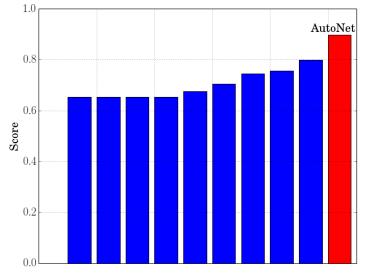
- Joint optimization of:
 - Network architecture
 - Hyperparameters

[Mendoza, Klein, Feurer, Springenberg & Hutter, AutoML 2016]

- Featurized data \rightarrow fully-connected network
 - Up to 5 layers (with 3 layer hyperparameters each)
 - 14 network hyperparameters, in total 29 hyperparameters
 - Optimized for 18h on 5GPUs
 - Auto-Net won several datasets against human experts
 - E.g., Alexis data set:

UNI FREIBURG

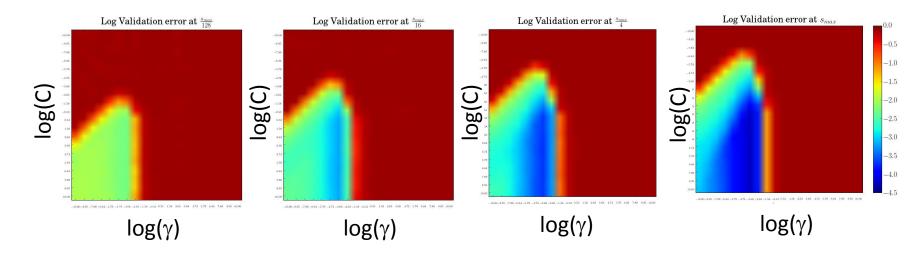
- 54491 data points,
 5000 features, 18 classes
- First automated deep learning system to win a ML competition data set against human experts



Using Cheap Approximations of the Blackbox

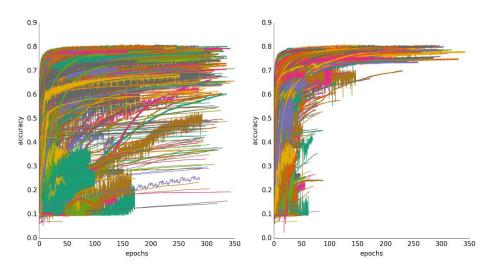
Reasoning across subsets of the data

- Up to 1000x speedups [Klein et al, AISTATS 2017]



Reasoning across training epochs

[Swersky et al, arXiv 2014] [Domahn et al, IJCAI 2015]



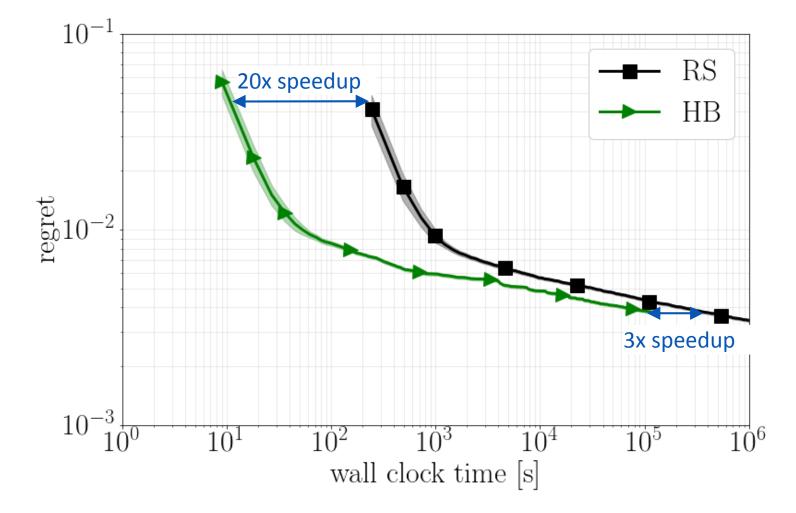
- Successive Halving [Jamieson & Talwalkar, AISTATS 2015]
 - Run N (=many) configurations for a small budget B
 - Iteratively:
 Select best half of configurations and double their budget
- Hyperband [Li et al, ICLR 2017]

UNI FREIBURG

> Calls Successive Halving iteratively with different tradeoffs of N and B

Hyperband vs. Random Search

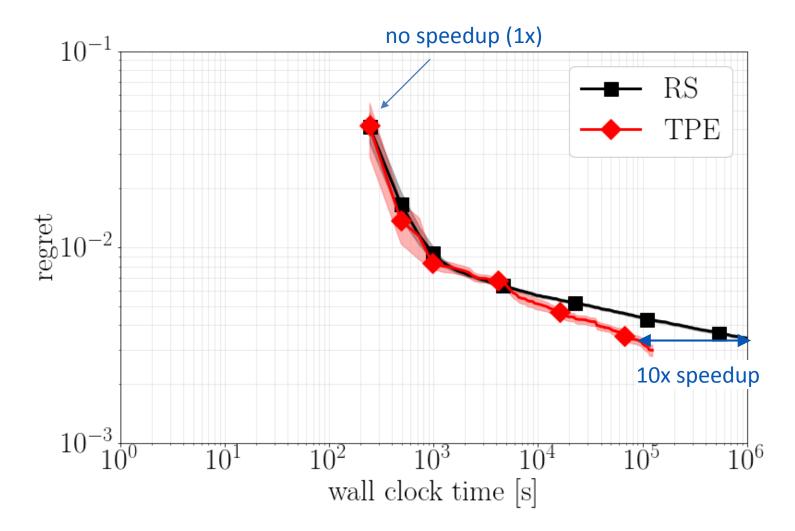
UNI FREIBURG



Biggest advantage: much improved anytime performance

Bayesian Optimization vs. Random Search

UNI FREIBURG

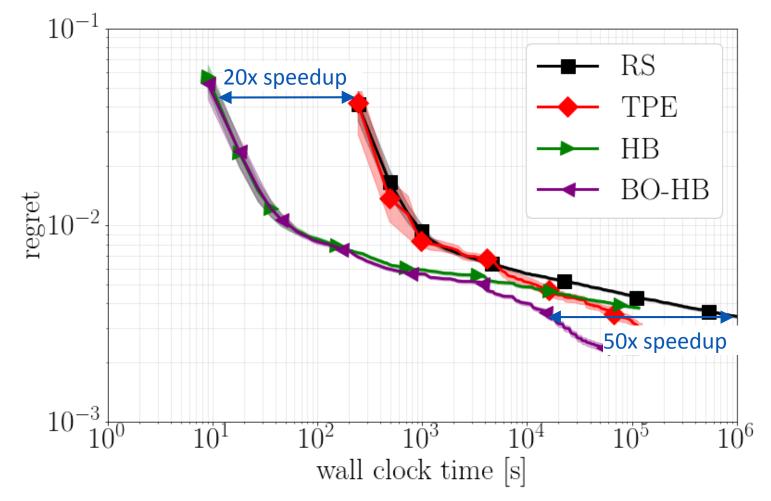


Biggest advantage: much improved final performance

Combining Bayesian Optimization & Hyperband

UNI FREIBURG

[Falkner, Klein & Hutter, BayesOpt 2017]

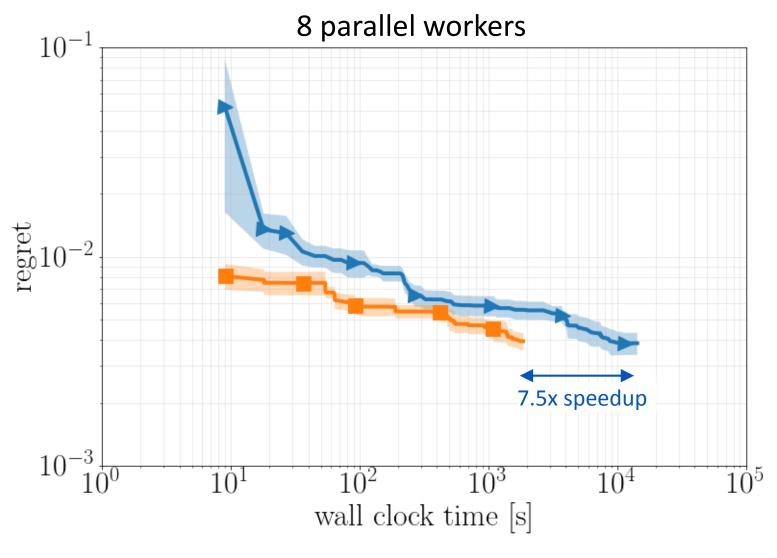


Best of both worlds: strong anytime and final performance

Almost Linear Speedups By Parallelization

UNI FREIBURG

[Falkner, Klein & Hutter, BayesOpt 2017]



Tuning CNNs on a Budget: CIFAR-10

[Falkner, Klein & Hutter, BayesOpt 2017]

• Six design decisions

UNI FREIBURG

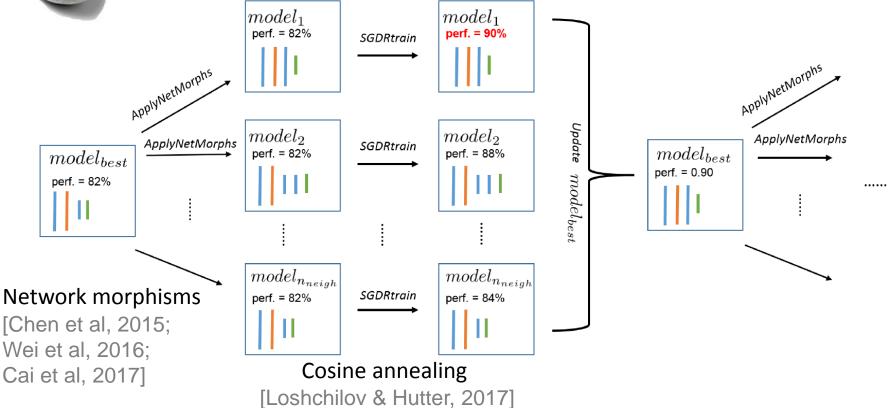
- Depth, widening factor
- Learning rate, batch size, weight decay, momentum
- Maximum budget per CNN run: 2 hours on a Titan X
 - Ran BO-HB for 12 hours on 10 GPUs
 - Result: 4% test error
- Maximum budget per CNN run: 3 hours on a Titan X
 - Ran BO-HB for 12 hours on 10 GPUs
 - Result: 3.5% test error

Neural Architecture Search on a Budget

[Elsken, Metzen & Hutter, MetaLearn 2017]

UNI FREIBURG

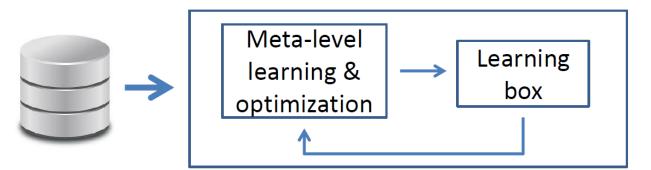
Online Adaptation of Architecture & Hyperparams



Result: architecture search in 12 hours on 1 GPU: 5.7% on CIFAR-10

Conclusion

- FREIBURG
 - Bayesian optimization enables true end-to-end learning
 - Auto-WEKA, Auto-sklearn & Auto-Net



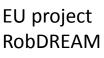
- Large speedups by going beyond blackbox optimization
 - Learning across datasets
 - Learning across data subsets & epochs
 - Combination of Hyperband and Bayesian optimization
 - Online adaptation of architectures & hyperparameters
- Links to code: <u>http://automl.org</u>

Thanks!

Funding sources

European Research Council

DFG Deutsche Forschungsgemeinschaft



My fantastic team

Other collaborators

UBC: Chris Thornton, Holger Hoos, Kevin Leyton-Brown, Kevin Murphy DeepMind: Ziyu Wang, Nando de Freitas Bosch: Thomas Elsken, Jan Hendrik Metzen MPI Tübingen: Philipp Hennig Uni Freiburg: Tobias Springenberg, Robin Schirrmeister, Tonio Ball, Thomas Brox, Wolfram Burgard

I'm looking for more great postdocs!