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Humans	vs.	DDQN

Black	dots:	human	play
Blue	curve:	mean	of	human	play
Blue	dashed	line:	‘expert’	human	play	

Red	dashed	lines:	
DDQN	after	10,	25,	200M	frames
(~	46,	115,	920	hours)

[Tsividis,	Pouncy,	Xu,	Tenenbaum,	Gershman,	2017] Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope

Humans	after	15	minutes	tend	to	outperform	DDQN	after	115	hours



How	to	bridge	this	gap?

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope
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(how much they measure / incentivise general intelligence)
more multi-agent / non-stationary / real-world-like.

(how impressive they are)
more learning. 
more compute.
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function approximators)

DQN, PG
(deep nets, hard-coded 

various tricks)

2013
2016

RL^2
(Learn the RL 

algorithm. 
structure fixed.)

CodeGen
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Zone of “not going to happen.”

[Slide adapted from Andrej Karpathy]
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Meta	Learning	for	Optimization
Task distribution: different neural networks, weight initializations, and/or 
different loss functions

n Bengio	et	al.,	(1990)	Learning	a	synaptic	learning	rule

n Naik	et	al.,	(1992)	Meta-neural	networks	that	learn	by	learning

n Hochreiter	et	al.,	(2001)	Learning	to	learn	using	gradient	descent

n Younger	et	al.,	(2001),	Meta	learning	with	back	propagation

n Andrychowicz	et	al.,	(2016)	Learning	to	learn	by	gradient	descent	by	gradient	descent

n Chen	et	al.,	(2016)	Learning	to	Learn	for	Global	Optimization	of	Black	Box	Functions

n Wichrowska	et	al.,	(2017)	Learned	Optimizers	that	Scale	and	Generalize

n Ke	et	al.,	(2017)	Learning	to	Optimize	Neural	Nets

n Wu	et	al.,	(2017)	Understanding	Short-Horizon	Bias	in	Stochastic	Meta-Optimization
Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Meta	Learning	for	Classification
Task distribution: different classification datasets (input: images, output: class labels)
n Hochreiter et	al.,	(2001)	Learning	to	learn	using	gradient	descent
n Younger	et	al.,	(2001),	Meta	learning	with	back	propagation
n Koch	et	al.,	(2015)	Siamese	neural	networks	for	one-shot	image	recognition
n Santoro	et	al.,	(2016)	Meta-learning	with	memory-augmented	neural	networks
n Vinyals	et	al.,	(2016)	Matching	networks	for	one	shot	learning
n Edwards	et	al.,	(2016)	Towards	a	Neural	Statistician
n Ravi	et	al.,	(2017)	Optimization	as	a	model	for	few-shot	learning
n Munkhdalai	et	al.,	(2017)	Meta	Networks
n Snell	et	al.,	(2017)	Prototypical	Networks	for	Few-shot	Learning
n Shyam	et	al.,	(2017)	Attentive	Recurrent	Comparators
n Finn	et	al.,	(2017)	Model-Agnostic	Meta-Learning	for	Fast	Adaptation	of	Deep	Networks
n Mehrotra	et	al.,	(2017)	Generative	Adversarial	Residual	Pairwise	Networks	for	One	Shot	Learning
n Mishra	et	al.,	(2017)	Meta-Learning	with	Temporal	Convolutions
n Li	et	al.,	(2017)	Meta-SGD:	Learning	to	Learn	Quickly	for	Few	Shot	Learning
n Finn	and	Levine,	(2017)	Meta-Learning	and	Universality:	Deep	Representations	and	Gradient	Descent	can	Approximate	
any	Learning	Algorithm

n Anon@OpenReview,	(2017)	Recasting	Gradient-Based	Meta-Learning	as	Hierarchical	Bayes
Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Meta	Learning	for	Generative	Models
Task distribution: different unsupervised datasets (e.g. collection of images)

n Rezende et	al.,	(2016)	One-Shot	Generalization	in	Deep	Generative	Models
n Edwards	et	al.,	(2016)	Towards	a	Neural	Statistician
n Bartunov	et	al.,	(2016)	Fast	Adaptation	in	Generative	Models	with	Generative	Matching	

Networks
n Bornschein et	al.,	(2017)	Variational Memory	Addressing	in	Generative	Models
n Reed	et	al.,	(2017)	Few-shot	Autoregressive	Density	Estimation:	Towards	Learning	to	

Learn	Distributions



n Learning	to	Reinforcement	Learn

n Learning	to	Imitate

Meta-Learning	for	Control

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Reinforcement	Learning

[Duan,	Schulman,	Chen,	Bartlett,	Sutskever,	Abbeel,	2016]		also:	[Wang	et	al,	2016]

Agent

Environment
asr

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Reinforcement	Learning

[Duan,	Schulman,	Chen,	Bartlett,	Sutskever,	Abbeel,	2016]		also:	[Wang	et	al,	2016]

RL	Algorithm

Policy	

Environment
aor

RL	Agent

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Reinforcement	Learning

[Duan,	Schulman,	Chen,	Bartlett,	Sutskever,	Abbeel,	2016]		also:	[Wang	et	al,	2016]
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Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Reinforcement	Learning

[Duan,	Schulman,	Chen,	Bartlett,	Sutskever,	Abbeel,	2016]		also:	[Wang	et	al,	2016]

…

RL	Algorithm

Policy	

Environment	A
aor

RL	Algorithm

Policy	

Environment	B
aor

RL	Agent RL	Agent
Traditional	RL	research:
• Human	experts	develop	

the	RL	algorithm
• After	many	years,	still	

no	RL	algorithms	nearly	
as	good	as	humans…

Alternative:
• Could	we	learn	a	better	

RL	algorithm?	
• Or	even	learn	a	better	

entire	agent?

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Meta-Reinforcement	Learning

[Duan,	Schulman,	Chen,	Bartlett,	Sutskever,	Abbeel,	2016]		also:	[Wang	et	al,	2016]

"Fast”	RL
Agent

Environment	A

Meta	RL
AlgorithmEnvironment	B

…

Meta-training	environments
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Meta-Reinforcement	Learning

[Duan,	Schulman,	Chen,	Bartlett,	Sutskever,	Abbeel,	2016]		also:	[Wang	et	al,	2016]

"Fast”	RL
Agent

Environment	A
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…
Environment	F

Meta-training	environments

Testing	environments

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Meta-Reinforcement	Learning

[Duan,	Schulman,	Chen,	Bartlett,	Sutskever,	Abbeel,	2016]		also:	[Wang	et	al,	2016]

"Fast”	RL
Agent

Environment	A

ar,o

Meta	RL
AlgorithmEnvironment	B

…
Environment	G

Meta-training	environments

Testing	environments

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Meta-Reinforcement	Learning

[Duan,	Schulman,	Chen,	Bartlett,	Sutskever,	Abbeel,	2016]		also:	[Wang	et	al,	2016]

"Fast”	RL
Agent

Environment	A

ar,o

Meta	RL
AlgorithmEnvironment	B

…
Environment	H

Meta-training	environments

Testing	environments

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Formalizing	Learning	to	Reinforcement	Learn

[Duan,	Schulman,	Chen,	Bartlett,	Sutskever,	Abbeel,	2016]		also:	[Wang	et	al,	2016] Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope
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Formalizing	Learning	to	Reinforcement	Learn

[Duan,	Schulman,	Chen,	Bartlett,	Sutskever,	Abbeel,	2016]		also:	[Wang	et	al,	2016]

M : sample MDP

⌧ (k)M : k’th trajectory in MDP M
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Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



n RLagent =	RNN	=	generic	computation	architecture
n different	weights	in	the	RNN	means	different	RL	algorithm	and	

prior

n different	activations	in	the	RNN	means	different	current	policy

n meta-train	objective	can	be	optimized	with	an	existing	(slow)	RL	
algorithm

Representing RLagent✓
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Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope[Duan,	Schulman,	Chen,	Bartlett,	Sutskever,	Abbeel,	2016]	 also:	[Wang	et	al,	2016]

:		RL2



n Like	RL2	but:

replace	the	LSTM	with	
dilated	temporal	
convolution	(like	wavenet)	
+	attention

[Wavenet:	van	den	Oord	et	al,	2016]

[Attention-is-all-you-need:	Vaswani et	al,	2017]

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope[Mishra*,	Rohaninejad*,	Chen,	Abbeel,	2017]

Representing RLagent✓ :		SNAIL



Key	idea: End-to-end	learning	of	parameter	vector	θ	that
is	good	init	for	fine-tuning	for	many	tasks

fine-tuning:
train	data	for
new	task

pretrained	parameters

MAML	training:

MAML	test	time:

[Finn,	Abbeel,	Levine	ICML	2017]

finetuned parameters

finetuned parameters

Representing RLagent✓ :		MAML



Evaluation:	Multi-Armed	Bandits
n Multi-Armed	Bandits setting

n Each	bandit	has	its	own	distribution	
over	pay-outs

n Each	episode	=	choose	1	bandit
n Good	RL	agent	should	explore	

bandits	sufficiently,	yet	also	exploit	
the	good/best	ones

n Provably	(asymptotically)	optimal	
RL	algorithms have	been	invented	
by	humans:	Gittins	index,	UCB1,	
Thompson	sampling,	…

[Duan,	Schulman,	Chen,	Bartlett,	Sutskever,	Abbeel,	2016] Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Bandits

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope[Mishra*,	Rohaninejad*,	Chen,	Abbeel,	2017]



n Task	– reward	based	on	target	running	direction	+	speed

Evaluation:	Locomotion	– Half	Cheetah

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope[Duan,	Schulman,	Chen,	Bartlett,	Sutskever,	Abbeel,	2016]



n Task	– reward	based	on	target	running	direction	+	speed

n Result	of	meta-training	=	a	single	agent	(the	“fast	RL	agent”),	
which	masters	each	task	almost	instantly	within	1st episode

Evaluation:	Locomotion	– Half	Cheetah



n Task	– reward	based	on	target	running	direction	+	speed

Evaluation:	Locomotion	– Ant

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope[Duan,	Schulman,	Chen,	Bartlett,	Sutskever,	Abbeel,	2016]



n Task	– reward	based	on	target	running	direction	+	speed

n Result	of	meta-training	=	a	single	agent	(the	“fast	RL	agent”),	
which	masters	each	task	almost	instantly	within	1st episode

Evaluation:	Locomotion	– Ant



Evaluation:	Visual	Navigation

Agent’s view Maze

Agent	input:	current	image
Agent	action:	straight	/	2	degrees	left	/	2	degrees	right
Map	just	shown	for	our	purposes,	but	not	available	to	agent

Related	work:	Mirowski,	et	al,	2016;	Jaderberg et	al,	2016;	Mnih et	al,	2016;	Wang	et	al,	2016



Agent	Dropped	in	New	Maze

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope[Mishra*,	Rohaninejad*,	Chen,	Abbeel,	2017]



Meta-Learning	Shared	Hierarchies

[Frans,	Ho,	Chen,	Abbeel,	Schulman,	2017] Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope

Goal:	find	subpolicies that	enable	fast	
learning	of	master	policy



Meta-Learning	Shared	Hierarchies
RL2	Meta-Learning	Objective:

=	find	a	set	of	subpolicies that	enable	
fast	learning	of	the	master	policy

max
✓

EME
⌧ (k)
M

"
KX

k=1

R(⌧ (k)M ) | RLagent✓

#

MLSH	Meta-Learning	Objective:



MLSH -- Experiment	1:	Moving	Bandits

…

Hope	for
• Learned	subpolicies: low	level	control	for	each	of	the	targets
• High	level	policy:	standard	bandit	problem

Episode	Duration	=	50,		Subpolicy Duration	=	10



n Episode	duration	=	1000

n Subpolicy duration	=	200

Experiment	2:	Maze	Navigation

…

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Discovered	Three	Gaits

MLSH	agent	was	trained	on	nine	separate	mazes.
It	discovered	sub-policies	for	upwards,	rightwards,	and	downwards	movement.



Meta	Learning	for	RL
Task distribution: different environments
n Schmidhuber.	Evolutionary	principles	in	self-referential	learning.	(1987)
n Wiering,	Schmidhuber.	Solving	POMDPs	with	Levin	search	and	EIRA.	(1996)
n Schmidhuber,	Zhao,	Wiering.	Shifting	inductive	bias	with	success-story	algorithm,	adaptive	Levin	search,	

and	incremental	self-improvement.	(MLJ	1997)
n Schmidhuber,	Zhao,	Schraudolph.	Reinforcement	learning	with	self-modifying	policies	(1998)
n Zhao,	Schmidhuber.	Solving	a	complex	prisoner’s	dilemma	with	self-modifying	policies.	(1998)
n Schmidhuber.	A	general	method	for	incremental	self-improvement	and	multiagent learning.	(1999)
n Singh,	Lewis,	Barto.	Where	do	rewards	come	from?	(2009)
n Singh,	Lewis,	Barto.	Intrinsically	Motivated	Reinforcement	Learning:	An	Evolutionary	Perspective		(2010)
n Niekum,	Spector,	Barto.	Evolution	of	reward	functions	for	reinforcement	learning	(2011)
n Duan et	al.,	(2016)	RL2:	Fast	Reinforcement	Learning	via	Slow	Reinforcement	Learning
n Wang	et	al.,	(2016)	Learning	to	Reinforcement	Learn
n Finn	et	al.,	(2017)	Model-Agnostic	Meta-Learning
n Mishra,	Rohinenjad et	al.,	(2017)	Simple	Neural	AttentIve meta-Learner
n Frans et	al.,	(2017)	Meta-Learning	Shared	Hierarchies Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



n Learning	to	Reinforcement	Learn

n Learning	to	Imitate

Meta-Learning	for	Control

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Imitation	Learning	in	Robotics

[Abbeel	et	al.	2008] [Kolter	et	al.	2008] [Ziebart	et	al.	2008]

[Schulman	et	al.	2013] [Finn	et	al.	2016]
Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Imitation	Learning



Imitation	Learning

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



One-Shot	Imitation	Learning

[Duan,	Andrychowicz,	Stadie,	Ho,	Schneider,	Sutskever,	Abbeel,	Zaremba,	2017]	



One-Shot	Imitation	Learning

[Duan,	Andrychowicz,	Stadie,	Ho,	Schneider,	Sutskever,	Abbeel,	Zaremba,	2017]	 Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



One-Shot	Imitation	Learning

[Duan,	Andrychowicz,	Stadie,	Ho,	Schneider,	Sutskever,	Abbeel,	Zaremba,	2017]	 Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Learning	a	One-Shot	Imitator

One-shot	
imitator

[Figure	credit:	Bradly Stadie] Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope

Demo	1	of	task	i Demo	2	of	task	i



Proof-of-concept:	Block	Stacking

n Each	task	is	specified	by	a	
desired	final	layout
n Example:	abcd

n “Place	c	on	top	of	d,	
place	b	on	top	of	c,	
place	a	on	top	of	b.”

[Duan,	Andrychowicz,	Stadie,	Ho,	Schneider,	Sutskever,	Abbeel,	Zaremba,	2017]	 Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



Evaluation

[Duan,	Andrychowicz,	Stadie,	Ho,	Schneider,	Sutskever,	Abbeel,	Zaremba,	2017]	 Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



n Meta-learning	loss:

n Task	loss	=	behavioral	cloning	loss:					[Pomerleau’89,Sammut’92]

Learning	a	One-Shot	Imitator	with	MAML

[Finn*,	Yu*,	Zhang,	Abbeel,	Levine,	2017] Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



n Meta-training	targets	/	objects

Robot	Experiments:	Learning	to	Place
n Meta-testing	targets	/	objects

1,300	demonstrations	for	meta-training
Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope[Finn*,	Yu*,	Zhang,	Abbeel,	Levine,	2017]



Robot	Experiments:	Learning	to	Place
1	demo imitation

Succes rate:	90%
Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope[Finn*,	Yu*,	Zhang,	Abbeel,	Levine,	2017]



Robot	Experiments:	Learning	to	Place
1	demo imitation

Succes rate:	90%
Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope[Finn*,	Yu*,	Zhang,	Abbeel,	Levine,	2017]



n Architectures	for	meta	RL	and	imitation	agents
n Neural

n Code

n Lifelong	Learning
n Non-stationary	environments

n Competition

Current	Directions

Pieter	Abbeel	-- embody.ai	/	UC	Berkeley	/	Gradescope



[1]	RL2,	Duan,	Schulman,	Chen,	Bartlett,	Sutskever,	Abbeel,	2016
[2]	Simple	Neural	Attentive	Meta-Learner,	Mishra*,	Rohaninejad*,	Chen,	Abbeel,	2017
[3]	MAML,	Finn,	Abbeel,	Levine,	2017
[4]	Meta-Learning	Shared	Hierarchies,	Frans,	Ho,	Chen,	Abbeel,	Schulman,	2017
[5]	One-Shot	Imitation,	Duan,	Andrychowicz,	Stadie,	Ho,	et	al,	2017
[6]	One-Shot	Visual	Imitation	Learning,	Finn*,	Yu*,	Zhang,	Abbeel,	Levine,	2017

Chelsea	Finn	[3,6] Sergey	Levine	[3,6] Yan	Duan [1,5] John	Schulman	[1,4,5] Xi	Chen	[1,2,4] Peter	Bartlett	[1] Ilya	Sutskever [1,5,7] Marcin	Andrychowicz [5,9]

Jonathan	Ho	[4,5] Jonas	Schneider	[5,8,	9]Wojciech Zaremba [5,8,9] Josh	Tobin	[8,9] Rachel	Fong	[8,9] Alex	Ray	[8,9]

[7]	Continuous	Adaptation,	Al-Shedivat,	Bansal,	Burda,	Sutskever,	
Mordatch,	Abbeel,	2017
[8]	Domain	Randomization	for	Transferring	Deep	Neural	Nets	from	Sim	
to	Real	World,	Tobin,	Fong,	Ray,	Schneider,	Zaremba,	Abbeel,	2017	
[9]	Hindsight	Experience	Replay,	Andrychowicz,	Wolski,	Ray,	Schneider,	
Fong,	Welinder,	McGrew,	Tobin,	Abbeel,	Zaremba,	2017

Peter	Welinder [9]

Tianhe Yu	[5]M.	Rohaninejad [3]Nikhil	Mishra	[3]Filip	Wolski [9]Bob	McGrew	[9]

Kevin	Frans [4]

Maruan
Al-Shedivat [7]

Trapit
Bansal	[7]

Yura Burda [7] Igor	Mordatch [7]

Bradly	Stadie [5]


